Implementing Support Vector Machine Sentiment Analysis to Students' Opinion toward Lecturer in an Indonesian Public University

Main Article Content

Daniel Febrian Sengkey
Agustinus Jacobus
Fabian Johanes Manoppo

Abstract

Student feedback is an important evaluation tool for quality improvement. Moreover, in Indonesian higher education system there is an assessment regulation that puts special attention to the availability of the student feedback system. However, parts of the questionnaire are in the form of descriptive text that requires more effort for analysis. This situation leads to a very tiresome work in case of the number of documents reaches several hundred or even thousands. There were some efforts to apply computer-assisted classification by utilizing machine learning, however, most of them only analyzed English documents. Only a handful that studied the classification of documents in Bahasa Indonesia. In reality, we found some cases where the students used mixed languages while filling the evaluation forms. Therefore, in this study, we expand the application of text classification by using Support Vector Machne (SVM) to cases of student feedback in mixed languages. The model was built computationally and from the test, we get 74% accuracy and 0.46 Kappa value.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Sengkey, D. F., Jacobus, A., & Manoppo, F. J. (2019). Implementing Support Vector Machine Sentiment Analysis to Students’ Opinion toward Lecturer in an Indonesian Public University. Journal of Sustainable Engineering: Proceedings Series, 1(2), 194-198. https://doi.org/10.35793/joseps.v1i2.27
Section
Articles

References

Altrabsheh N, Gaber MM, Cocea M. SA-E: Sentiment analysis for education. In: Frontiers in Artificial Intelligence and Applications. vol. 255; 2013. p. 353–362. Available from: https://researchportal.port.ac.uk/portal/en/publications/sae-sentiment-analysis-for-education(c99ed217-4c60-494f-8c2c-4f049cf43585).html. doi:10.3233/978-1-61499-264-6-353.

Ullah MA. Sentiment analysis of students feedback: A study towards optimal tools. In: 2016 International Workshop on Computational Intelligence (IWCI). IEEE; 2016. p. 175–180. Available from: http://ieeexplore.ieee.org/document/7860361/. doi:10.1109/IWCI.2016.7860361.

Santoso VI, Virginia G, Lukito Y. Penerapan Sentiment Analysis pada Hasil Evaluasi Dosen dengan Metode Support Vector Machine. Jurnal Transformatika. 2017 jan;14(2):72. Available from: http://journals.usm.ac.id/index.php/transformatika/article/view/439. doi:10.26623/transformatika.v14i2.439.

Esparza GG, De-Luna A, Zezzatti AO, Hernandez A, Ponce J, Álvarez M, et al. A sentiment analysis model to analyze students reviews of teacher performance using support vector machines. In: Omatu S, Rodrı́guez S, Villarrubia G, Faria P, Sitek P, Prieto J, editors. 14th International Conference, Advances in Intelligent Systems and Computing. vol. 620. Springer, Cham; 2018. p. 157–164. Available from: http://link.springer.com/10.1007/978-3-319-62410-5_19. doi:10.1007/978-3-319-62410-5 19.

Peraturan Badan Akreditasi Nasional Perguruan Tinggi Nomor 2 tahun 2019 tentang Panduan Penyusunan Laporan Evaluasi Diri dan Panduan Penyusunan Laporan Kinerja Program Studi dalam Instrumen Akreditasi Program Studi. Badan Akreditasi Nasional Perguruan Tinggi; 2019. Available from: https://banpt.or.id/instrumen/Perban/PerBAN-PT_No_2_th._2019-Instrumen_APS_LED_dan_LKPS.pdf.

Lidya SK, Sitompul OS, Efendi S. Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine ( Svm ) dan K - Nearest Neighbour (K-NN). In: Seminar Nasional Teknologi Informasi dan Komunikasi 2015 (SENTIKA 2015). vol. -. Yogyakarta, Indonesia: Fakultas Teknologi Industri Unviersitas Atma Jaya Yogyakarta; 2015. p. 1–8. Available from: https://fti.uajy.ac.id/sentika/publikasi/makalah/2015/1.pdf.

Hidayatullah AF, Ma’arif MR. Pre-processing Tasks in Indonesian Twitter Messages. Journal of Physics: Conference Series. 2017 jan;801:012072. Available from: http://stacks.iop.org/1742-6596/801/i=1/a=012072?key=crossref.aa393a7d6f6073c78834540f95f483bc. doi:10.1088/1742-6596/801/1/012072.

Hidayatullah AF, Ratnasari CI, Wisnugroho S. Analysis of Stemming Influence on Indonesian Tweet Classification. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2016;14(2):665–673. Available from: http://www.journal.uad.ac.id/index.php/TELKOMNIKA/article/view/3113. doi:10.12928/telkomnika.v14i2.3113.

Silge J, Robinson D. tidytext: Text Mining and Analysis Using Tidy Data Principles in R. JOSS. 2016;1(3). Available from: http://dx.doi.org/10.21105/joss.00037. doi:10.21105/joss.00037.

Devid Haryalesmana Wahid. masdevid/ID-Stopwords: Stopwords collection of Bahasa Indonesia collected from many sources.; 2016. Available from: https://github.com/masdevid/ID-Stopwords/.

Tala FZ. A Study of Stemming Effect on Information Retrieval in Bahasa Indonesia. M.Sc. [thesis]. Master of Logic Project, Institute for Logic, Language and Computation. Universiteit van Amsterdam; 2003.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien; 2019. R package version 1.7-2. Available from: https://CRAN.R-project.org/package=e1071.

Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977 mar;33(1):159–174

Most read articles by the same author(s)